Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Cell Transplant ; 33: 9636897231217382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229498

RESUMEN

Because there is a shortage of donor kidneys, researchers are exploring the possibility of using genetically modified pig kidneys for transplantation. Approaches involving knockout of carbohydrate genes or knockin of protective proteins have been attempted to determine the best gene modifications. In this study, we utilized GalT-/-;hCD39;hCD55 and GalT-/-;hCD39;hCD46;hCD55;thrombomodulin (TBM) pigs for transplantation in nonhuman primates (NHPs). The NHPs survived for 4 weeks after kidney transplantation (4 WAT) from the GalT-/-;hCD39;hCD55 pig and for 6 WAT from the GalT-/-;hCD39;hCD46;hCD55;TBM pig. However, messenger RNA (mRNA) sequencing and immunohistochemistry analysis revealed that the 6 WAT kidney exhibited more severe apoptosis, inflammation, loss of renal function, and renal fibrosis than the 4 WAT kidney. These results indicate that additional knockin of complement regulator (hCD46) and coagulation regulator (TBM) is not enough to prevent renal damage, suggesting that improved immune suppression is needed for more prolonged survival.


Asunto(s)
Trasplantes , Animales , Porcinos , Animales Modificados Genéticamente , Trasplante Heterólogo/métodos , Primates , Riñón , Rechazo de Injerto
2.
Front Immunol ; 14: 1298035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035112

RESUMEN

The decline in blood donation rates and the ongoing shortage of blood products pose significant challenges to medical societies. One potential solution is to use porcine red blood cells (pRBCs) from genetically modified pigs as an alternative to human red blood cells (hRBCs). However, adverse immunological reactions remain a significant obstacle to their use. This study aimed to evaluate the compatibility of diverse genetically modified pRBCs with human serum. We acquired human complement-competent serum, complement 7 (C7)-deficient serum, and hRBCs from all ABO blood types. Additionally, we used leftover clinical samples from health checkups for further evaluation. pRBCs were collected from wild-type (WT) and genetically modified pigs: triple knockout (TKO), quadruple KO (QKO), and TKO/hCD55.hCD39 knockin (hCD55.hCD39KI). The extent of C3 deposition on RBCs was measured using flow cytometry after incubation in C7-deficient serum diluted in Ca++-enriched or Ca++-depleted and Mg++-enriched buffers. The binding of immunoglobulin (Ig) M/IgG antibody to RBCs after incubation in ABO-type human serum was evaluated using flow cytometry. Naïve human serum- or sensitized monkey serum-mediated hemolysis was also evaluated. Phagocytosis was assessed by incubating labeled RBCs with the human monocytic cell line THP-1 and measurement by flow cytometry. All three genetic modifications significantly improved the compatibility of pRBCs with human serum relative to that of WT pRBCs. The extent of IgM/IgG binding to genetically modified pRBCs was lower than that of WT pRBCs and similar to that of O-type hRBCs. Total and alternative pathway complement activation in all three genetically modified pRBCs was significantly weaker than that in WT pRBCs and did not differ from that in O-type hRBCs. The extent of serum-mediated hemolysis and phagocytosis of these genetically modified pRBCs was low and similar to that of O-type hRBCs. Sensitized monkey serum-mediated hemolysis in QKO and TKO/hCD55.hCD39KI pRBCs was higher than in O-type hRBCs but lower than in TKO pRBCs. The elimination of porcine carbohydrate antigens in genetically modified pigs significantly enhanced pRBC compatibility with naïve human sera, which was comparable to that of O-type hRBCs. These findings provide valuable insights into the development of pRBCs as potential alternatives to hRBCs.


Asunto(s)
Eritrocitos , Hemólisis , Animales , Humanos , Porcinos , Animales Modificados Genéticamente , Estudios de Factibilidad , Haplorrinos
3.
J Pharm Biomed Anal ; 224: 115196, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36529041

RESUMEN

Recent studies show that shifts in energy metabolism in activated microglia are linked to their functions and immune responses in the ischemic brain. We previously reported that an antagonist of the bone morphogenetic protein, noggin, enhanced myelination in the ischemic brain during the chronic phase, and conditioned media (CM) from activated BV2 microglia treated with noggin after ischemia/reperfusion (I/R) increased the expression of myelin basic protein (MBP) in oligodendrocytes (MO3.13). To determine whether noggin induced changes in cell metabolism, metabolite profiles in BV2 and MO3.13 cells were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance spectroscopy. Compared to vehicle-treated BV2 cells, noggin treatment (100 ng/mL for 3 h after I/R) suppressed the I/R-induced increase in intracellular glucose and lactate levels but increased extracellular levels of glucose and several amino acids. When MO3.13 cells were exposed to noggin CM from BV2 cells, most of the vehicle CM-induced changes in the levels of metabolites such as choline, formate, and intermediates of oxidative phosphorylation were reversed, while the glycerol level was markedly increased. An increase in glycerol level was also observed in the noggin-treated ischemic brain and was further supported by the expression of glycerol-3-phosphate dehydrogenase 1 (required for glycerol synthesis) in the cytoplasm of MBP-positive oligodendrocytes in the ischemic brains treated with noggin. These results suggest that noggin-induced changes in the metabolism of microglia provide a favorable environment for myelin synthesis in oligodendrocytes during the recovery phase after ischemic stroke.


Asunto(s)
Isquemia Encefálica , Humanos , Isquemia Encefálica/metabolismo , Glucosa/metabolismo , Glicerol , Isquemia/metabolismo , Isquemia/patología , Microglía , Oligodendroglía/metabolismo , Oligodendroglía/patología
4.
Front Immunol ; 14: 1286632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38268927

RESUMEN

Introduction: The global shortage of human blood for medical use has prompted the development of alternative blood sources. Nonhuman primates (NHPs) are commonly used owing to their physiological similarities to humans. The objective of the current study was to establish a controlled-blood-loss model in NHPs to explore their clinical and biological responses. Methods: Blood was sequentially withdrawn from 10 cynomolgus monkeys (10, 14, 18, 22, and 25% of the total blood volume); their vital signs were monitored, and blood parameters were serially analyzed. Humoral mediators in the blood were measured using flow cytometry and enzyme-linked immunosorbent assays. Results: In NHPs subjects to 25% blood loss and presenting with related clinical symptoms, the systolic blood pressure ratio on day 0 after bleeding was significantly lower than that of the animals from the other groups (median: 0.65 vs. 0.88, P = 0.0444). Red blood cell counts from day 0-14 and hematocrit levels from day 0-7 were markedly decreased relative to the baseline (P < 0.01). These parameters showed a direct correlation with the extent of blood loss. The levels of creatine phosphokinase, aspartate aminotransferase, and alanine aminotransferase exhibited increases in response to blood loss and had a stronger correlation with the hemoglobin ratio than the volume of blood loss. The levels of C3a and C4a, as well as interleukin (IL)-1α and IL-15, displayed a strong correlation, with no apparent association with blood loss. Conclusion: The findings of the present study showed that only NHPs with 25% blood loss exhibited clinical decompensation and significant systolic blood pressure reduction without fatalities, suggesting that this level of blood loss is suitable for evaluating blood transfusion efficacy or other treatments in NHP models. In addition, the ratio of hemoglobin may serve as a more dependable marker for predicting clinical status than the actual volume of blood loss. Thus, our study could serve as a basis for future xenotransfusion research and to predict biological responses to massive blood loss in humans where controlled experiments cannot be ethically performed.


Asunto(s)
Hemorragia , Interleucina-1alfa , Humanos , Animales , Recuento de Eritrocitos , Aspartato Aminotransferasas , Hemoglobinas , Primates
5.
Front Immunol ; 13: 859261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444661

RESUMEN

Background: Triple knockout (TKO) donor pigs lacking alpha-1,3-galactose (Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd(a) expressions were developed to improve the clinical success of xenotransplantation. Neu5Gc, a sialic acid expressed on cell surfaces, recruits factor H to protect cells from attack by the complement system. Lack of Neu5Gc expression may cause unwanted complement activation, abrogating the potential benefit of gene-modified donor pigs. To investigate whether TKO porcine cells display increased susceptibility to complement activation in human serum, pathway-specific complement activation, apoptosis, and human platelet aggregation by porcine cells were compared between alpha-1,3-galactosyltransferase gene-knockout (GTKO) and TKO porcine cells. Methods: Primary porcine peripheral blood mononuclear cells (pPBMCs) and endothelial cells (pECs) from GTKO and TKO pigs were used. Cells were incubated in human serum diluted in gelatin veronal buffer (GVB++) or Mg++-EGTA GVB, and C3 deposition and apoptotic changes in these cells were measured by flow cytometry. C3 deposition levels were also measured after incubating these cells in 10% human serum supplemented with human factor H. Platelet aggregation in human platelet-rich plasma containing GTKO or TKO pECs was analyzed. Results: The C3 deposition level in GTKO pPBMCs or pECs in GVB++ was significantly higher than that of TKO pPBMCs or pECs, respectively, but C3 deposition levels in Mg++-EGTA-GVB were comparable between them. The addition of factor H into the porcine cell suspension in 10% serum in Mg++ -EGTA-GVB inhibited C3 deposition in a dose-dependent manner, and the extent of inhibition by factor H was similar between GTKO and TKO porcine cells. The percentage of late apoptotic cells in porcine cell suspension in GVB++ increased with the addition of human serum, of which the net increase was significantly less in TKO pPBMCs than in GTKO pPBMCs. Finally, the lag time of platelet aggregation in recalcified human plasma was significantly prolonged in the presence of TKO pECs compared to that in the presence of GTKO pECs. Conclusion: TKO genetic modification protects porcine cells from serum-induced complement activation and apoptotic changes, and delays recalcification-induced human platelet aggregation. It does not hamper factor H recruitment on cell surfaces, allowing the suppression of alternative complement pathway activation.


Asunto(s)
Factor H de Complemento , Leucocitos Mononucleares , Animales , Animales Modificados Genéticamente , Activación de Complemento , Factor H de Complemento/genética , Ácido Egtácico , Células Endoteliales , Humanos , Ácidos Neuramínicos , Porcinos
6.
Biomedicines ; 9(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34829903

RESUMEN

Acute lung injury (ALI) is characterized by alveolar damage, lung edema, and exacerbated inflammatory response. Growth arrest-specific protein 6 (Gas6) mediates many different functions, including cell survival, proliferation, inflammatory signaling, and apoptotic cell clearance (efferocytosis). The role of Gas6 in bleomycin (BLM)-induced ALI is unknown. We investigated whether exogenous administration of mouse recombinant Gas6 (rGas6) has anti-inflammatory and anti-apoptotic effects on BLM-induced ALI. Compared to mice treated with only BLM, the administration of rGas6 reduced the secretion of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and macrophage inflammatory protein-2, and increased the secretion of hepatocyte growth factor in bronchoalveolar lavage (BAL) fluid. rGas6 administration also reduced BLM-induced inflammation and apoptosis as evidenced by reduced neutrophil recruitment into the lungs, total protein levels in BAL fluid, caspase-3 activity, and TUNEL-positive lung cells in lung tissue. Apoptotic cell clearance by alveolar macrophages was also enhanced in mice treated with both BLM and rGas6 compared with mice treated with only BLM. rGas6 also had pro-resolving and anti-apoptotic effects in mouse bone marrow-derived macrophages and alveolar epithelial cell lines stimulated with BLM in vitro. These findings indicate that rGas6 may play a protective role in BLM-induced ALI.

7.
Transplant Proc ; 53(10): 3093-3100, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763883

RESUMEN

BACKGROUND: To understand changes in biological responses in nonhuman primate (NHP) recipients of xenotransplantation (XTP), we retrospectively investigated chronological changes in cytokine profiles of NHP recipients after solid-organ XTP. METHODS: Plasma samples were collected from 7 NHP recipients of pig heart or kidney XTP with α-1,3-galactosyltransferase gene knockout (GTKO) under anti-CD154-based immune suppression at the following time points: immediately before; 2 hours, 3 days, and 7 days after XTP; and weekly thereafter until the graft failed. The plasma levels of the following cytokines were measured: interleukin (IL)-1α, IL-1ß, IL-6, IL-12p70, IL-8, IL-10, IL-15, tumor necrosis factor, interferon gamma (IFN-γ), D-dimer, C3a, and histone-complexed DNA fragments. For in vitro experiments, human natural killer (NK) cells were cocultured with wild-type porcine endothelial cells (PECs), GTKO-PECs, and human umbilical vein endothelial cells, with or without anti-CD154 antibody. IFN-γ levels in the culture supernatants were compared. RESULTS: IFN-γ levels peaked on day 7 or 10 of XTP and then decreased to basal levels, whereas proinflammatory cytokine levels increased along with the elevation of histone-complexed DNA fragments and were sustained until xenograft failure. In vitro, human NK cells produced more IFN-γ when in contact with wild-type PECs than with human umbilical vein endothelial cells, which was not reduced by the use of GTKO-PECs or addition of anti-CD154 antibody to the mixture. CONCLUSIONS: In NHP recipients of XTP, the early peak of IFN-γ priming subsequent inflammatory responses may be attributed to NK cell activation in response to xenografts.


Asunto(s)
Células Endoteliales , Interferón gamma , Animales , Citocinas , Primates , Estudios Retrospectivos , Porcinos , Trasplante Heterólogo
8.
Food Sci Biotechnol ; 30(9): 1225-1231, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603821

RESUMEN

The mi-iuy croaker Miichthys miiuy has immense commercial value in the Republic of Korea. The red drum Sciaenops ocellatus is widely produced by aquaculture, although its price is approximately 25% that of M. miiuy. S. ocellatus has black spots on its tail, enabling it to be distinguished from M. miiuy based on appearance. However, identifying S. ocellatus after simple processing steps, such as skin removal and dicing, is difficult. Certain traders misrepresent and sell S. ocellatus as M. miiuy or cultured M. miiuy for illegal economical gain. Therefore, an accurate and rapid identification method is required to distinguish between M. miiuy and S. ocellatus in the field. Here, a method for rapid field identification was developed based on species-specific primers using a portable ultra-fast PCR instrument. The ultra-fast real-time PCR method can complete the entire analytical procedure, including DNA isolation, amplification, and detection, within 30 min, thus maintaining the accuracy of identifying M. miiuy and S. ocellatus products on site. Forty-nine commercial products were tested, and all samples were successfully identified. Thus, the developed method is rapid, efficient tool for ensuring consumer protection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00954-4.

9.
Korean J Physiol Pharmacol ; 25(6): 575-583, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697268

RESUMEN

Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

10.
Artículo en Inglés | MEDLINE | ID: mdl-34415825

RESUMEN

Tejocote (Crataegus mexicana, Mexican hawthorn), known as a weight-loss supplement, has been marketed online and is easily available for overseas direct purchase. Alipotec (brand name) is known as one of the most popular products containing tejocote in Mexico and other countries. However, adverse effects have been reported by users of these supplements. Therefore it is necessary to find the reason for the side effect. Dietary supplement samples labelled as containing tejocote were analysed using mass spectrometry and DNA barcoding analysis. Our results demonstrate that Alipotec samples contained ingredients from different species, yellow oleander instead of tejocote. The rpoB barcode region was able to differentiate between tejocote and yellow oleander species. Moreover, it was also observed that three compounds, including thevetin B, neriifolin, and digitoxigenin, clearly distinguish between tejocote and yellow oleander samples. This is the first and preliminary investigation to use an integrated approach of both chemical and genomic profiling for the authentication of dietary supplement containing tejocote.


Asunto(s)
Cardenólidos/análisis , Crataegus/química , Código de Barras del ADN Taxonómico , Digitoxigenina/análisis , Extractos Vegetales/análisis , Cardenólidos/administración & dosificación , Cardenólidos/efectos adversos , Crataegus/efectos adversos , Suplementos Dietéticos , Digitoxigenina/administración & dosificación , Digitoxigenina/efectos adversos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/efectos adversos
11.
Sci Rep ; 11(1): 12511, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131232

RESUMEN

Ischemic preconditioning (IPC) significantly reduces ischemia-reperfusion injury in the brain by inducing ischemic tolerance. Although emerging evidence suggests that microRNAs (miRNAs) contribute to the pathogenesis of brain ischemia and IPC-induced neuroprotection, the role of miRNAs and their underlying mechanisms are still unclear. IPC was induced in male C57BL/6 mice by brief bilateral common carotid artery occlusion. After 24 h, mice underwent transient middle cerebral artery occlusion followed by 3 h of reperfusion. Expression levels of messenger RNAs (mRNAs) and proteins were examined in the ipsilateral cortex, and mimics and inhibitors of selective miRNAs were transfected into Neuro-2a cells before oxygen-glucose deprivation (OGD). Post-IPC miRNA expression profiling identified neuroprotection-associated changes in miRNA expression in the ipsilateral cortex after ischemic stroke. Among them, miR-33-5p and miR-135b-5p were significantly downregulated by IPC. Inhibition of miR-33-5p and miR-135b-5p expression protected Neuro-2a cells from OGD-induced apoptosis. Inhibition of these two miRNAs significantly increased mRNA and protein levels of ATP-binding cassette subfamily A member 1 (ABCA1), and a binding assay showed that these two miRNAs showed specificity for Abca1 mRNA. Overexpression of ABCA1 decreased the Bax/Bcl2 mRNA ratio and activation of caspase-9 and caspase-3, whereas knockdown of ABCA1 expression increased the Bax/Bcl2 mRNA ratio and the percentage of Neuro-2a cells with a loss of mitochondrial membrane potential after OGD-treatment. In conclusion, ABCA1 expression is regulated by miR-33-5p and miR-135b-5p. Increased ABCA1 expression following IPC exerts a protective influence against cerebral ischemia via suppression of a mitochondria-dependent apoptosis pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Isquemia Encefálica/genética , MicroARNs/genética , Daño por Reperfusión/genética , Animales , Apoptosis/genética , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Precondicionamiento Isquémico/métodos , Ratones , Neuroprotección/genética , Oxígeno/metabolismo , Daño por Reperfusión/patología
12.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802169

RESUMEN

In order to treat Coronavirus Disease 2019 (COVID-19), we predicted and implemented a drug delivery system (DDS) that can provide stable drug delivery through a computational approach including a clustering algorithm and the Schrödinger software. Six carrier candidates were derived by the proposed method that could find molecules meeting the predefined conditions using the molecular structure and its functional group positional information. Then, just one compound named glycyrrhizin was selected as a candidate for drug delivery through the Schrödinger software. Using glycyrrhizin, nafamostat mesilate (NM), which is known for its efficacy, was converted into micelle nanoparticles (NPs) to improve drug stability and to effectively treat COVID-19. The spherical particle morphology was confirmed by transmission electron microscopy (TEM), and the particle size and stability of 300-400 nm were evaluated by measuring DLSand the zeta potential. The loading of NM was confirmed to be more than 90% efficient using the UV spectrum.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Biología Computacional/métodos , Sistemas de Liberación de Medicamentos/métodos , Células A549 , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Benzamidinas/química , Benzamidinas/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Simulación por Computador , Bases de Datos Farmacéuticas , Portadores de Fármacos/química , Reposicionamiento de Medicamentos , Estabilidad de Medicamentos , Ácido Glicirrínico/química , Ácido Glicirrínico/uso terapéutico , Guanidinas/química , Guanidinas/uso terapéutico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Tamaño de la Partícula
13.
Transplant Proc ; 53(5): 1762-1770, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33581850

RESUMEN

BACKGROUND: Human preformed antibodies (Abs), anti-galactose-alpha-1,3-galactose (Gal) and anti-N-glycolylneuraminic acid (Neu5Gc), can react with porcine antigens of wild-type pigs. To provide basic population data of the Abs for potential application in clinical xenotransplantation, we developed enzyme-linked immunosorbent assay methods and investigated the serum titers of anti-Gal and anti-Neu5Gc Abs, including immunoglobulin (Ig) M and IgG along with its subclasses, in humans. METHODS: Anti-Gal and anti-Neu5Gc Abs serum titers were measured in 380 healthy Korean adults using the in-house enzyme-linked immunosorbent assays. The frequency and median values of anti-Gal and anti-Neu5Gc were measured, and their class and subclass distribution were evaluated. RESULTS: The detection frequencies of anti-Gal were 99.2%, 95.0%, 23.2%, 94.5%, 12.4%, and 3.4% for IgM, IgG, IgG1, IgG2, IgG3, and IgG4, respectively. The detection frequencies of anti-Neu5Gc Abs were 87.4%, 96.6%, 1.6%, 46.3%, 0.0%, and 0.0% for IgM, IgG, IgG1, IgG2, IgG3, and IgG4, respectively. The median values of anti-Gal IgM (1001.6 ng/mL) and IgG (1198.3 ng/mL) were significantly higher than those of anti-Neu5Gc Abs (IgM, 328.4 ng/mL; IgG, 194.7 ng/mL; P < .001). IgG2 titers of both anti-Gal and anti-Neu5Gc Abs correlated better with the IgG class than the titers of other IgG subclasses. CONCLUSIONS: The titers of anti-Gal Abs were higher than those of anti-Neu5Gc Abs. IgG2 was the main IgG subclass in both anti-Gal and anti-Neu5Gc Abs. Variation in the titers of anti-Gal or anti-Neu5Gc Abs may partly explain the biological and immunologic changes that occur in recipients of xenotransplants.


Asunto(s)
Disacáridos/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Ácidos Neuramínicos/inmunología , Adulto , Animales , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/clasificación , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Porcinos
14.
Brain Res ; 1750: 147172, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141066

RESUMEN

Ischemic preconditioning (IP) reduces brain damage after subsequent ischemic strokes by activating endogenous protective mechanisms in rodents. Transient ischemic attack (TIA) induces tolerance in the human brain after ischemic strokes; defining mechanisms of IP effects may provide therapeutic targets to improve recovery of patients with ischemic strokes. Iron transported across the blood-brain barrier (BBB) is required for brain functions, including myelination, and its levels should be finely regulated to avoid harmful effects. This study aimed to determine whether IP enhances repair processes by modulating iron metabolism during the post-stroke chronic phase. Male mice were divided into sham and IP groups, and IP was induced 24 h before a transient focal ischemic stroke. Sensorimotor recovery was observed over 8 weeks after the stroke, and brain volumes and levels of proteins related to repair processes and iron metabolism in the ischemic brains were examined 8 weeks after the stroke. There was significantly less ischemic brain atrophy in the IP group than in the sham group, with no differences in sensorimotor recovery between the groups. Levels of tight junction proteins of BBB, neurites outgrowth markers, and myelin sheath proteins and markers for mature oligodendrocytes were significantly increased in the IP group. Iron import proteins, transferrin receptor 1 and DMT1, were also increased in the IP group. These results indicate that IP increases brain repair processes and iron uptake during the chronic phase after an ischemic stroke, and provide new insights to understand the molecular mechanisms of TIA effects on post-stroke recovery.


Asunto(s)
Hierro/metabolismo , Precondicionamiento Isquémico/métodos , Accidente Cerebrovascular Isquémico/metabolismo , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Hierro/fisiología , Ataque Isquémico Transitorio/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de la Mielina/metabolismo , Neuritas/metabolismo , Accidente Cerebrovascular/metabolismo , Uniones Estrechas/metabolismo
15.
Neurobiol Aging ; 96: 33-42, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32920472

RESUMEN

The total iron level in the brain increases with age, and excess iron is associated with neurodegenerative diseases; however, the mechanism of brain iron deposition is unknown. In peripheral cells, the expression of hepcidin, a master regulator of iron homeostasis, is regulated by estrogen. This study aimed to determine whether hepcidin was involved in iron deposition in the brain and brain endothelial cells of estrogen-deficient aged female mice. Aged mice showed increased levels of hepcidin and ferritin in the brain and brain microvessels compared with young mice, and these levels were reduced by estrogen replacement in ovariectomized aged mice. In the brain endothelial cell line bEnd.3, the lipopolysaccharide (10 ng/mL)-induced increases of hepcidin mRNA and protein levels, the number of Prussian blue-positive cells, and free radicals were reduced after estrogen treatment. These results suggest that estrogen deficiency with an increase of hepcidin is partly responsible for iron deposition in the brain and brain endothelial cells and that hepcidin can be a target to prevent brain aging and neurodegeneration in postmenopausal women.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Encéfalo/metabolismo , Estrógenos/deficiencia , Expresión Génica , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Regulación hacia Arriba , Animales , Encéfalo/irrigación sanguínea , Encéfalo/citología , Células Endoteliales/metabolismo , Estrógenos/fisiología , Femenino , Ratones Endogámicos C57BL , Microvasos/metabolismo , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/prevención & control , Posmenopausia , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Korean J Physiol Pharmacol ; 24(3): 203-212, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32392911

RESUMEN

Promyelocytic leukemia (PML) gene, through alternative splicing of its C-terminal region, generates several PML isoforms that interact with specific partners and perform distinct functions. The PML protein is a tumor suppressor that plays an important role by interacting with various proteins. Herein, we investigated the effect of the PML isoforms on oncostatin M (OSM)-induced signal transducer and activator of transcription-3 (STAT-3) transcriptional activity. PML influenced OSM-induced STAT-3 activity in a cell type-specific manner, which was dependent on the p53 status of the cells but regardless of PML isoform. Interestingly, overexpression of PML exerted opposite effects on OSM-induced STAT-3 activity in p53 wild-type and mutant cells. Specifically, overexpression of PML in the cell lines bearing wild-type p53 (NIH3T3 and U87-MG cells) decreased OSM-induced STAT-3 transcriptional activity, whereas overexpression of PML increased OSM-induced STAT-3 transcriptional activity in mutant p53-bearing cell lines (HEK293T and U251-MG cells). When wild-type p53 cells were co-transfected with PML-IV and R273H-p53 mutant, OSM-mediated STAT-3 transcriptional activity was significantly enhanced, compared to that of cells which were transfected with PML-IV alone; however, when cells bearing mutant p53 were co-transfected with PML-IV and wild-type p53, OSM-induced STAT-3 transcriptional activity was significantly decreased, compared to that of transfected cells with PML-IV alone. In conclusion, PML acts together with wild-type or mutant p53 and influences OSM-mediated STAT-3 activity in a negative or positive manner, resulting in the aberrant activation of STAT-3 in cancer cells bearing mutant p53 probably might occur through the interaction of mutant p53 with PML.

17.
Biosens Bioelectron ; 158: 112131, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32275204

RESUMEN

Circulating tumor cells (CTCs) are cancer cells that have been shed from a primary tumor and circulate in the bloodstream during progression of cancer. They may thus serve as circulating biomarkers that can predict, diagnose and guide therapy. Moreover, phenotypic and genotypic analysis of CTCs can facilitate prospective assessment of mutations and enable personalized treatment. A number of methodologies based on biological and physical differences between circulating tumor and non-tumor cells have been developed over the past few years. However, these methods did not have sufficient sensitivity or specificity. In this work, a remote analysis protocol was designed using motion microscopy that amplifies cellular micro motions in a captured video by re-rendering small motions to generate extreme magnified visuals to detect dynamic motions that are not otherwise visible by naked eye. Intriguingly, motion microscopy demonstrated fluctuations around breast tumor cells, which we referred to herein as cellular trail. Phenomena of cellular trail mostly emerged between 0.5 and 1.5 Hz on amplified video images. Interestingly, cellular trails were associated with cell surface proteins and flow rates rather than mitochondrial activity. Moreover, cellular trails were present only around circulating tumor cells from individuals with breast cancer under conditions of 20-30 µm/s and 0.5-1.5 Hz. Thus, motion microscopy based CTC detection method can offer a valuable supplementary diagnostic tool for assessment of drug efficacy and identifying physical characteristics of tumor cells for further research.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Microscopía/métodos , Técnicas de Diagnóstico Molecular , Células Neoplásicas Circulantes/metabolismo , Imagen de Lapso de Tiempo , Antígenos de Superficie/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Microfluídica/instrumentación , Microfluídica/métodos , Microscopía Fluorescente , Mitocondrias/metabolismo , Células Neoplásicas Circulantes/patología
18.
J Neuroinflammation ; 16(1): 246, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791357

RESUMEN

BACKGROUND: Neuroinflammation plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Thus, the development of agents that can control neuroinflammation has been suggested as a promising therapeutic strategy for PD. In the present study, we investigated whether the phosphodiesterase (PDE) 10 inhibitor has anti-inflammatory and neuroprotective effects in neuroinflammation and PD mouse models. METHODS: Papaverine (PAP) was utilized as a selective inhibitor of PDE10. The effects of PAP on the expression of pro-inflammatory molecules were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells by ELISA, RT-PCR, and Western blot analysis. The effects of PAP on transcription factors were analyzed by the electrophoretic mobility shift assay, the reporter gene assay, and Western blot analysis. Microglial activation and the expression of proinflammatory molecules were measured in the LPS- or MPTP-injected mouse brains by immunohistochemistry and RT-PCR analysis. The effect of PAP on dopaminergic neuronal cell death and neurotrophic factors were determined by immunohistochemistry and Western blot analysis. To assess mouse locomotor activity, rotarod and pole tests were performed in MPTP-injected mice. RESULTS: PAP inhibited the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia by modulating various inflammatory signals. In addition, PAP elevated intracellular cAMP levels and CREB phosphorylation. Treatment with H89, a PKA inhibitor, reversed the anti-inflammatory effects of PAP, suggesting the critical role of PKA signaling in the anti-inflammatory effects of PAP. We verified the anti-inflammatory effects of PAP in the brains of mice with LPS-induced systemic inflammation. PAP suppressed microglial activation and proinflammatory gene expression in the brains of these mice, and these effects were reversed by H89 treatment. We further examined the effects of PAP on MPTP-injected PD model mice. MPTP-induced dopaminergic neuronal cell death and impaired locomotor activity were recovered by PAP. In addition, PAP suppressed microglial activation and proinflammatory mediators in the brains of MPTP-injected mice. CONCLUSIONS: PAP has strong anti-inflammatory and neuroprotective effects and thus may be a potential candidate for treating neuroinflammatory disorders such as PD.


Asunto(s)
Antiinflamatorios/uso terapéutico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Papaverina/uso terapéutico , Trastornos Parkinsonianos/prevención & control , Inhibidores de Fosfodiesterasa/uso terapéutico , Animales , Antiinflamatorios/farmacología , Línea Celular Transformada , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Fármacos Neuroprotectores/farmacología , Papaverina/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/enzimología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
19.
Cells ; 8(7)2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31247991

RESUMEN

The epithelial-mesenchymal transition (EMT) is important in organ fibrosis. We hypothesized that growth arrest-specific protein 6 (Gas6) and its underlying mechanisms play roles in the prevention of EMT in alveolar epithelial cells (ECs). In this study, to determine whether Gas6 prevents TGF-ß1-induced EMT in LA-4 and primary alveolar type II ECs, real-time PCR and immunoblotting in cell lysates and ELISA in culture supernatants were performed. Migration and invasion assays were performed using Transwell chambers. Pretreatment of ECs with Gas6 inhibited TGF-ß1-induced EMT based on cell morphology, changes in EMT marker expression, and induction of EMT-activating transcription factors. Gas6 enhanced the levels of cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) and PGD2 as well as of their receptors. COX-2 inhibitors and antagonists of PGE2 and PGD2 receptors reversed the inhibition of TGF-ß1-induced EMT, migration, and invasion by Gas6. Moreover, knockdown of Axl or Mer reversed the enhancement of PGE2 and PGD2 and suppression of EMT, migration and invasion by Gas6. Our data suggest Gas6-Axl or -Mer signalling events may reprogram ECs to resist EMT via the production of PGE2, PGD2, and their receptors.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células A549 , Animales , Movimiento Celular , Ciclooxigenasa 2/metabolismo , Dinoprostona/biosíntesis , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Cultivo Primario de Células , Prostaglandina D2/biosíntesis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E/metabolismo , Proteínas Recombinantes/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl
20.
J Stroke ; 20(3): 350-361, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30309230

RESUMEN

BACKGROUND AND PURPOSE: The pathogenesis of moyamoya disease (MMD) remains poorly understood, and no reliable molecular biomarkers for MMD have been identified to date. The present study aimed to identify epigenetic biomarkers for use in the diagnosis of MMD. METHODS: We performed integrated analyses of gene expression profiles and DNA methylation profiles in endothelial colony forming cells (ECFCs) from three patients with MMD and two healthy individuals. Candidate gene mRNA expression and DNA methylation status were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing analysis of an expanded ECFC sample set from nine patients with MMD and ten controls. We evaluated the diagnostic accuracy of the potential biomarkers identified here using receiver operating characteristic curve analyses and further measured major angiogenic factor expression levels using a tube formation assay and RT-qPCR. RESULTS: Five candidate genes were selected via integrated analysis; all five were upregulated by hypomethylation of specific promoter CpG sites. After further validation in an expanded sample set, we identified a candidate biomarker gene, sortilin 1 (SORT1). DNA methylation status at a specific SORT1 promoter CpG site in ECFCs readily distinguished patients with MMD from the normal controls with high accuracy (area under the curve 0.98, sensitivity 83.33%, specificity 100%). Furthermore, SORT1 overexpression suppressed endothelial cell tube formation and modulated major angiogenic factor and matrix metalloproteinase-9 expression, implying SORT1 involvement in MMD pathogenesis. CONCLUSION: s Our findings suggest that DNA methylation status at the SORT1 promoter CpG site may be a potential biomarker for MMD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...